Topological pseudo entropy
نویسندگان
چکیده
We introduce a pseudo entropy extension of topological entanglement called entropy. Various examples the entropies are examined in three-dimensional Chern-Simons gauge theory with Wilson loop insertions. Partition functions knotted loops directly related to (R\'enyi) entropies. also show that certain setup is equivalent interface two-dimensional conformal field theories (CFTs), and leverage equivalence calculate particular examples. Furthermore, we define left-right boundary CFTs derive universal formula for pair arbitrary states. As byproduct, find rational has contribution identical on torus.
منابع مشابه
Entropy operator for continuous dynamical systems of finite topological entropy
In this paper we introduce the concept of entropy operator for continuous systems of finite topological entropy. It is shown that it generates the Kolmogorov entropy as a special case. If $phi$ is invertible then the entropy operator is bounded with the topological entropy of $phi$ as its norm.
متن کاملTopological entropy
1. Definitions and general properties. Let X be a compact topological space. Definition 1. For any open cover 31 of X let N(ñ) denote the number of sets in a subco ver of minimal cardinality. A subco ver of a cover is minimal if no other subcover contains fewer members. Since X is compact and 31 is an open cover, there always exists a finite subcover. To conform with prior work in ergodic theor...
متن کاملLeaky Pseudo-Entropy Functions
Pseudo-random functions (PRFs) introduced by Goldwasser, Goldreich, and Micali (FOCS 1984), are one of the most important building blocks in cryptography. A PRF family is a family of seeded functions {fs}, with the property that no efficient adversary can tell the difference between getting oracle access to a random PRF function fs, and getting oracle access to a truly random function. In this ...
متن کاملentropy operator for continuous dynamical systems of finite topological entropy
in this paper we introduce the concept of entropy operator for continuous systems of finite topological entropy. it is shown that it generates the kolmogorov entropy as a special case. if $phi$ is invertible then the entropy operator is bounded with the topological entropy of $phi$ as its norm.
متن کاملThe topological Rohlin property and topological entropy
For a compact metric space X let G = H(X) denote the group of self homeomorphisms with the topology of uniform convergence. The group G acts on itself by conjugation and we say that X satisfies the topological Rohlin property if this action has dense orbits. We show that the Hilbert cube, the Cantor set and, with a slight modification, also even dimensional spheres, satisfy this property. We al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of High Energy Physics
سال: 2021
ISSN: ['1127-2236', '1126-6708', '1029-8479']
DOI: https://doi.org/10.1007/jhep09(2021)015